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Abstract. We analyse the statistical entropy of two-dimensional lattice-gas models in terms of the con-
tributions which arise from space correlations of increasing order. The “residual multiparticle entropy”,
defined as the contribution to the excess entropy that is associated with correlations involving more than
two particles, is calculated for the Ising and Coulomb lattice gases. The thermodynamic behaviour of the
residual multiparticle entropy is then discussed in relation to the phase diagram of the model and the
existence of underlying signatures of order-disorder phase transitions is also investigated.

PACS. 64.60.-i General studies of phase transitions – 64.60.Cn Order-disorder transformations; statistical
mechanics of model systems – 65.50.+m Thermodynamic properties and entropy

1 Introduction

Recently, the multiparticle correlation expan-
sion of the statistical entropy, as originally set
up for closed and open systems by Green [1]
and by Nettleton and Green [2] respectively, has
been revisited for a variety of continuous, three-
dimensional models by Giaquinta and co-workers [3–6].
In particular, these authors focussed on the thermody-
namic behaviour of the so-called “residual multiparticle
entropy” (RMPE), a quantity which was proposed as
an integral “measure” of the amount of spatial order
present in a fluid. More specifically, the RMPE yields the
resummed contribution to the excess entropy resulting
from n-body correlations, with n > 2, and is evaluated
as the difference between the excess entropy and the
“pair entropy”, i.e., the contribution associated with pair
correlations only. This last quantity usually provides the
overwhelming contribution to the excess entropy.

The evidence gathered so far on the RMPE of continu-
ous, simple-fluid systems shows that, at variance with the
pair entropy, it has not a definite sign. In fact, it turns out
that this quantity is negative at low density (or at high
temperature), but becomes positive in close proximity to
a phase transition leading to an even partially ordered
phase. As yet, a rigorous derivation of this behaviour from
first principles has not been given. However, it is not diffi-
cult to understand the rapid increase of the RMPE in the
transition region – as the transition is approached from
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the disordered side – as the necessary consequence of the
growing importance of multiparticle spatial correlations
in the overall entropic balance. To state it in a different
way, the increasing number and average size of statisti-
cally ordered domains (i.e., fully-correlated regions) re-
sults – in a system approaching an ordered phase – into a
rapid growth of the RMPE which, eventually, is bound to
attain positive values.

Such a picture was originally discussed in relation to
the freezing transition of hard spheres and Lennard-Jones
particles [3], and then successfully checked also for the
condensation of a hard-core Yukawa fluid [4], for the fluid-
fluid separation in binary mixtures of hard spheres [5], and
for the isotropic-nematic transition undergone by elon-
gated particles (hard spherocylinders) [6].

In this paper, we apply this method to lattice gases
in two dimensions (2D), and analyse two models that will
serve as representative cases for studying the RMPE in
conditions not considered before: the Ising model and the
neutral Coulomb gas. In particular, we intend to verify
whether features like the discreteness of space, the reduced
space dimensionality, the presence of a long-ranged inter-
action, and the continuous character of a phase transition
may affect in a sensitive way the functional behaviour of
the RMPE.

The paper is organized as follows: The general expres-
sion for the RMPE, appropriate to a lattice gas, is pre-
sented in Section 2; this quantity is then evaluated on a
square lattice for the Ising model and for a neutral mixture
of unit charges in Sections 3 and 4, respectively; Section 5
is finally devoted to concluding remarks.
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2 The entropy expansion

In the following, we consider systems of particles living on
a regular lattice with N sites. If multiple site occupancy
is forbidden, a configuration of such a system is a list
{ci, i = 1, . . . , N} of occupation numbers. As anticipated
in the Introduction, the RMPE is generally defined as:

∆s ≡ s(ex) − s2 , (1)

which is the difference between the excess entropy (i.e.,
the total entropy after subtracting the ideal-gas entropy
evaluated at the same density of the interacting system)
and the pair entropy. All such quantities are evaluated
per lattice site. The general expression of the pair entropy
is [7]:

s2

kB
= −1

2
ρ2
∑
i6=j

[gij ln gij − gij + 1] , (2)

where ρ = 〈ci〉 is the density and

gij =
〈cicj〉
ρ2

, (3)

is the pair correlation function. In equation (3), the aver-
age is generally taken over a grand-canonical ensemble of
systems. Note that in the case of mixtures formed by two
or more species, equation (2) is no longer appropriate and
must be modified as will be shown in Section 4.

Finally, the total entropy is determined through the in-
tegration of the equation of state along a thermodynamic
path, while the entropy of an ideal lattice gas reads [7]:

sid

kB
= −ρ lnρ− (1− ρ) ln (1− ρ) . (4)

3 The Ising lattice gas

Since the exact solution provided by Onsager in 1944 [8],
the 2D Ising model has been a crucial test for any approx-
imate theory of phase transitions. In this model, each site
of a square lattice is associated with a ±1 spin σi with
energy

H = −J
∑
〈i,j〉

σiσj − h
∑
i

σi , (5)

where both J and h are positive quantities. The first
sum in equation (5) is performed over nearest-neighbour
sites only. The Ising model undergoes a continuous phase
transition at zero field from a ferromagnetic to a para-
magnetic phase at a temperature Tc given by kBTc/J =
2
[
ln
(
1 +
√

2
)]−1 ' 2.2692.

Moreover, the Ising Hamiltonian can be rephrased as
a model of a fluid [9]. The mapping σi = 2ci − 1 defines
a lattice gas with the same thermodynamic properties of

the Ising spin system. In fact, the Ising partition function
turns out to be proportional to

Ξ =
∑
{c}

exp

βµ∑
i

ci + βε
∑
〈i,j〉

cicj

 , (6)

with β = (kBT )−1, ε = 4J , and µ = −8J + 2h. Equa-
tion (6) represents the grand-canonical partition function
of the so-called Ising lattice gas, whose critical tempera-
ture becomes kBTc/ (4J) ' 0.5673, whereas the equation
of the critical line reads µ = −2ε. In turn, the density
ρ is simply related to the Ising magnetization M = 〈σi〉
through ρ = (1 +M) /2.

We carried out a numerical simulation of the Ising
model at zero field to obtain the internal energy and the
correlation function 〈σiσj〉, which were then transformed
into the lattice-gas energy and pair correlation function
gij , respectively. In particular,

gij =
1 + 2 〈σi〉+ 〈σiσj〉

1 + 2 〈σi〉+ 〈σi〉 〈σj〉
· (7)

At zero field, 〈σi〉 = 0 and gij = 1 + 〈σiσj〉.
We used the Monte Carlo (MC) method and the

Metropolis algorithm to study systems made up of 20 or
40 sites on each side of a square lattice. Periodic conditions
were applied to the lattice boundary. Thermodynamic av-
erages were calculated along runs of 106 MC sweeps (typ-
ically, 50 000 sweeps were discarded for equilibration).

In order to calculate the RMPE of the Ising lattice
gas along the critical isochore ρ = 1/2, we need to eval-
uate the total entropy and the pair entropy. The for-
mer quantity is obtained through thermodynamic integra-
tion. We first calculate the Massieu function relative to β,
s̃ (β) /kB = s (β) /kB − βu (β) [10]. Upon integrating the
internal energy u (β) over β, one obtains the total entropy
per site as:

s (β2)
kB

=
s̃ (β1)
kB

+ β2 u (β2)−
∫ β2

β1

u (β) dβ . (8)

The initial constant s̃ (β1) was evaluated by resorting to
the high-temperature series for the Ising partition function
as provided by Kramers and Wannier [11]. We took β1 =
0.1, and performed the calculation of the entropy up to
β2 = 1

2.6 . Moreover, sid = kB ln 2 (see Eq. (4)).
On the other hand, the pair entropy requires the

knowledge of the lattice-gas pair correlation function.
From each MC run we extracted five different and sta-
tistically independent spin correlation functions in order
to calculate, besides the mean value of ∆s, also its mean
square deviation. We checked the sensitivity of ∆s to the
cutoff on gij , i.e., the error that we make if we cut gij
at a given distance |i− j|, starting from the largest dis-
tance allowed by the minimum-image convention, namely
half of the lattice side. In our figures we present always
the largest error. The asymptotic behaviour of 〈σiσj〉 was
also successfully checked against the exact results given
by Mc Coy and Wu [12].
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Fig. 1. The residual multiparticle entropy of an Ising lat-
tice gas plotted as a function of β along the critical isochore
ρ = 1/2. Data for two distinct lattice sizes, L = 20 (N) and
L = 40 (◦), are shown. The lines through the data are spline
interpolations. ∆s is seen to vanish for β ' 1.49 for both lattice
sizes.

Our final result for ∆s is shown in Figure 1. We ob-
serve that the behaviour of the Ising RMPE, when plotted
as a function of β along the critical isochore ρ = 1/2, is
similar to that exhibited by the hard-sphere RMPE when
plotted as a function of the density: there is a negative
well at high temperature (low density, in the hard-sphere
system), followed by a sharp increase toward positive val-
ues which causes ∆s to vanish at the inverse temperature
β0 = 1.494. This value should be compared with that of
the inverse critical temperature βc ' 1.7627. As the lattice
size grows from 20× 20 to 40× 40 sites, the data become
more reliable but no appreciable shift is observed in the
temperature corresponding to the RMPE zero.

A question can be raised about the larger distance
(about 18%) of the RMPE zero from the Ising critical
temperature, as compared with that of the same quan-
tity relative to the freezing point of a hard-sphere or
Lennard-Jones fluid in three dimensions [3]. In fact, the
nature of the two transitions is different and a different
structural “mechanism” is manifestly at work in the two
cases. In both cases ∆s is driven to positive values by the
increase in the average size and number of ordered do-
mains. However, in a hard-sphere fluid approaching the
solid phase, the RMPE becomes infinite at the random-
closest-packing density, which lies well beyond the first-
order phase-transition point. On the contrary, the diver-
gence of ∆s in the disordered Ising lattice gas occurs
just at the second-order phase-transition point as can be
shown on fairly general grounds. In fact, upon assuming
an asymptotic behaviour for the pair correlation function
in 2D of the type r−η exp (−r/ξ), it is easy to show that
the pair entropy behaves like minus ξ2−2η near above Tc,
resulting into a positive divergence of the RMPE. There-
fore, the temperature at which ∆s becomes positive can be
relatively far from the transition point. As a by-product,
one can estimate the quantity ν (1− η) through a fit of
the pair entropy in the scaling region close to the critical
point. In the Ising case, we find for a 40×40 lattice a value
of 0.70 against the exact result of 3/4. We conclude that

it is possible to extract fairly accurate (although partial)
information on the critical behaviour of the model also
from a finite-size-scaling analysis of the pair entropy.

We finally note that inside the ordered phase each term
in the entropy expansion is actually infinite. This makes
the evaluation of ∆s meaningless.

4 The neutral Coulomb gas

4.1 The model

Two-dimensional spin systems with continuous symmetry
have no long-range order at any temperature [13], but a
quasi-long-range-ordered phase can be defined, below a
certain temperature Tc, where the spin correlation func-
tion shows an algebraic decay that is typical of critical
systems [14]. In fact, a real phase transition occurs at
Tc [15]. A prototype of such systems is the XY model,
which is isomorphic to the 2D neutral Coulomb gas [16].
Another model, dually related to the XY model, is the dis-
crete Gaussian, solid-on-solid (SOS) model [17]. The phase
transition undergone by all these models was named af-
ter Kosterlitz and Thouless, who first discussed it in the
framework of the XY model, suggesting that the transition
was driven by the unbinding at Tc of topological defects
called “vortices”. Below the critical temperature, such vor-
tices bind together to form pairs with opposite charges. At
Tc, the free energy of the system shows an essential sin-
gularity only and, for this reason, the Kosterlitz-Thouless
(KT) transition is generally referred to as an infinite-order
phase transition.

In the 2D neutral Coulomb gas model (NCGM), the
low-temperature phase is insulating. The phase transition
occurs when dipoles formed by nearest-neighbour particles
with opposite charges unbind to form a free-charge, metal-
lic phase. Correspondingly, the inverse dielectric constant
jumps from 4Tc to zero.

The Hamiltonian of a system of interacting charges on
a L× L lattice reads:

H =
1
2

∑
i6=j

qiV (ri − rj) qj , (9)

where the sum is over all pairs of distinct lattice sites and
qi (i = 1, . . . , N = L2) is an integer-valued charge (qi = 0
means that no charge is present at site i). On a square
lattice, the interaction is given by [19]:

V (r) =
π

N

∑
(kx,ky)6= (0,0)

exp (ik · r) − 1
2− cos kx − cos ky

, (10)

where k is a Born-von Karman wave vector:

k =
2πmx

L
x̂ +

2πmy

L
ŷ , (11)

with mx,my = 0, 1, 2, ..., L− 1.
In the NCGM, the neutrality constraint

∑
i qi = 0

must be satisfied. This condition arises naturally



624 The European Physical Journal B

in the framework of the duality transformation of the
SOS model into the Coulomb gas [17]. We just men-
tion here that global charge neutrality is crucial for the
very existence of thermodynamics for a system of interact-
ing charges [18]. Actually, Lebowitz and Lieb have shown
that non-neutral configurations give a negligible contribu-
tion to the grand potential. In particular, in the thermo-
dynamic limit, the grand potential of an unconstrained
charge system equals that of a neutral system and both
are equal to the canonical free energy of a neutral system.
Similarly, we expect that globally charged configurations
of the 2D Coulomb gas do not contribute to the thermody-
namics, which is then ruled by neutral configurations only.

Unless the temperature is extremely high, the occur-
rence of multiple-charged particles in the NCGM is very
rare. Thus, for all practical purposes, unit charges only,
qi = 0,±1, play a role. We are thus led to consider in
the following a restricted NCGM where unit charges only
are present. In the grand-canonical ensemble, the resulting
NCGM partition function thus reads:

Ξ = 1 +
N/2∑
n=1

e2βµnZn,n (12)

with N even. Zn,n is the canonical partition function of
a system of n positive plus n negative unit charges, given
by:

Zn,n =
∑
{q}

δP
i qi,0

δP
i q

2
i ,2n

exp

−β
2

∑
i6=j

qiV (ri − rj) qj

.
(13)

This model is very similar to one studied recently by
Lee and Teitel [19]. They considered a neutral Coulomb
gas with multiple charges, with a further term in the
Hamiltonian given in equation (9) which has the effect of
disfavouring strongly the occurrence of multiple charges,
while being blind to unit charges. For this reason, we shall
refer to the phase diagram of reference [19] as the current
NCGM phase diagram. This phase diagram is actually
very rich (see Fig. 1 of Ref. [19]). A dipolar fluid is stable
at low T and µ; at high temperature, this phase trans-
forms into a liquid metal via a KT transition. At low T
and for µ > π/8, a fully-occupied lattice of “antiferro-
magnetically ordered” charges becomes stable which, at
high temperature, undergoes a KT transition to a metal-
lic state. At still higher temperatures, charges eventually
lose their ± order via an Ising transition. Finally, a first-
order line at µ = π/8 separates the fluid insulator from
the “solid” phase.

Besides the existence of as many as four different
phases in the NCGM phase diagram, the transition lines
themselves are of various nature. In fact, the phase dia-
gram includes a first-order line ending at a tricritical point,
an Ising line, and two KT lines. Actually, it is such a vari-
ety of behaviour that originally stimulated us to calculate
the RMPE for the NCGM, in order to check whether such
a quantity is sensitive to the boundaries of the metallic
fluid phase, which is by far the most disordered phase of
the model.

4.2 Numerical implementation

We sampled the NCGM with a Monte Carlo procedure
which, at each step, produces a new neutral configuration
where the state of two nearest-neighbour sites is updated.
Four different “moves” are allowed:

1) creation of two opposite charges;

2) annihilation of two opposite charges;

3) site exchange of two opposite charges;

4) diffusion of a charge to an empty site.

The acceptance of each move is ruled, as usual, by de-
tailed balance. Because of the long-range character of the
Coulomb interaction, the evaluation of the energy change
∆E associated with a trial move is time-consuming. In
order to speed up the calculation, we adopted the same
procedure used by Lee and Teitel in their MC simula-
tion [19].

We carried out MC runs of about 5× 106 sweeps in a
12× 12 lattice (a preliminary series of 50 000 sweeps was
discarded for equilibration). As a check of our code, we
first recovered the phase diagram of reference [19].

The following correlation functions were calculated:

g++
ij =

1
ρ2

+

〈ci,+cj,+〉 ; g−−ij =
1
ρ2
−
〈ci,−cj,−〉 ;

g+−
ij =

1
ρ+ρ−

〈ci,+cj,−〉 ; g−+
ij =

1
ρ−ρ+

〈ci,−cj,+〉 . (14)

Here, ci,+ = 1 only if a positive charge is present at site
i, etc.; ρ+ (ρ−) is the density of the positive (negative)
charges (both are in fact equal, due to neutrality; g++ and
g−−, as well as g+− and g−+, are also equal by symmetry).
These correlation functions are needed for estimating the
pair entropy (see Eq. (22) below).

We found that the MC sampling becomes rather ineffi-
cient in the highly dilute dipolar phase because of the very
small acceptance ratio of MC moves. In order to study also
this region of the phase diagram, we resorted to a pertur-
bative approximation of the grand-partition function. All
the configurations with up to six charges were enumerated
on a 12 × 12 lattice. Within such an approximation, the
grand-partition function reads:

Ξ ' 1 + e2βµZ1,1 + e4βµZ2,2 + e6βµZ3,3 . (15)

Once the energy and the density of the NCGM were
obtained (either through MC or exact state enumeration)
along a thermodynamic path, we calculated the total en-
tropy s (β, βµ) by resorting to thermodynamic integration
of the equation of state. The Massieu function relative to
β and βµ is:

s̃ (β, βµ)
kB

=
s (β, βµ)
kB

− βu (β, βµ) + βµρ (β, βµ) , (16)
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where u (β, βµ) is the energy and ρ (β, βµ) is the density.
Again, all quantities in equation (16) are evaluated per lat-
tice site. The entropy can be evaluated along a constant-
βµ path, as:

s

(
1

kBT
, βµ

)
=
∫ T

0

u

(
1

kBT
, βµ

)
1
T 2

dT

+
1
T
u

(
1

kBT
, βµ

)
− µ

T
ρ

(
1

kBT
, βµ

)
. (17)

On the other hand, along a constant-T path the entropy
is given by:

s

(
1

kBT
, βµ

)
= s̃

(
1

kBT
, 0
)

+
1
T

∫ µ

0

ρ

(
1

kBT
, βµ1

)
dµ1

+
1
T
u

(
1

kBT
, βµ

)
− µ

T
ρ

(
1

kBT
, βµ

)
. (18)

In the latter equation, the initial constant s̃
(

1
kBT

, 0
)

is
calculated from the Massieu function along the βµ = 0
path.

The RMPE is obtained through equation (1) after sub-
traction from the total entropy of the one-body and two-
body terms. As to the former contribution, we recall that
the entropy of an ideal, equimolar mixture reads:

sid (βµ)
kB

=
lnΞid (βµ)

N
− βµρid (βµ) , (19)

where

Ξid (βµ) = 1 +
N/2∑
n=1

e2βµn N !
n!n! (N − 2n)!

(20)

and

ρid (βµ) =
1
N

∂ lnΞid

∂βµ
. (21)

Finally, the pair entropy can be obtained through a
straightforward generalization of the formula given in ref-
erence [7] to two-component systems:

s2

kB
= −1

2
ρ2

+

∑
i6=j

[
g++
i,j ln g++

i,j − g++
i,j + 1

]
−1

2
ρ2
−
∑
i6=j

[
g−−i,j ln g−−i,j − g−−i,j + 1

]
−ρ+ρ−

∑
i6=j

[
g+−
i,j ln g+−

i,j − g+−
i,j + 1

]
. (22)

We note that, in principle, the above expression applies
to an unconstrained mixture, i.e., to a system where con-
figurations with different numbers of oppositely charged
species may also occur. However, as discussed in refer-
ence [18], we expect that such configurations make a van-
ishingly small contribution in the thermodynamic limit.
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Fig. 2. The residual multiparticle entropy of the neutral
Coulomb gas model plotted as a function of β along two paths
at constant βµ: (◦), βµ = 0; (4), βµ = 0.5. Solid markers
refer to data extracted from the low-density expansion of the
partition function, whereas empty markers correspond to MC
results. The lines through the data are spline interpolations.
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Fig. 3. The residual multiparticle entropy of the neutral
Coulomb gas model plotted as a function of β along two paths
at constant βµ: (◦), βµ = 1.2; (4), βµ = 2. Solid markers
refer to data extracted from the low-density expansion of the
partition function, whereas empty markers correspond to MC
results. The lines through the data are spline interpolations.
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Fig. 4. The residual multiparticle entropy of the neutral
Coulomb gas model plotted as a function of µ along two paths
at constant T : (◦), T = 0.11; (4), T = 0.16. Solid markers
refer to data extracted from the low-density expansion of the
partition function, whereas empty markers correspond to MC
results. The lines through the data are spline interpolations.



626 The European Physical Journal B

0.0 0.1 0.2 0.3 0.4
-0.04

-0.02

0.00

0.02

0.04

∆s

µ

Fig. 5. The residual multiparticle entropy of the neutral
Coulomb gas model plotted as a function of µ along three paths
at constant T : (◦), T = 0.19; (�), T = 0.20; (4), T = 0.30.
Solid markers refer to data extracted from the low-density ex-
pansion of the partition function, whereas empty markers cor-
respond to MC results. The lines through the data are spline
interpolations.
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Fig. 6. The phase diagram of the neutral 2D Coulomb lattice
gas model on a square lattice [19]. The phases are labelled as
follows: insulating gas (IG), insulating solid (IS), conducting
liquid (CL), and conducting solid (CS). The inset shows a mag-
nification of the relevant part of the phase diagram. The first-
order transition line ends at a tricritical point where the Ising
line starts. Dashed lines are Kosterlitz-Thouless (KT) transi-
tion lines. L0 is the locus of points where the residual multipar-
ticle entropy vanishes: (4), RMPE zeroes along constant-βµ
paths; (•), RMPE zeroes along constant-T paths. Dotted lines
are traced as a guide to the eye. The picture shows a clear con-
nection between such two “branches” of L0, associated with
the Ising and KT zeroes respectively, and the boundaries of
the CL phase. The two dotted lines merge at a point that is
close to the tricritical point.

4.3 Results

The behaviour of the RMPE, evaluated along some ther-
modynamic paths at constant βµ, is shown in Figures 2
and 3. For βµ = 0, ∆s starts negative at high tempera-
tures. As β grows, a minimum appears beyond which ∆s
first vanishes and then becomes positive. For increasing

values of βµ, a bump springs up from the bottom of the
negative well: this emerging structure eventually generates
two new zeroes with a maximum inside which becomes
higher and higher with βµ.

The evolution of ∆s along constant-T paths is shown
in Figures 4 and 5. At low temperature, the RMPE is al-
ways positive and increases sharply with the chemical po-
tential on approaching the first-order transition line at
µ ≈ 0.4. When T ≈ 0.16, a negative well develops inside
the RMPE profile which progressively erodes the positive
bump for low values of µ. At even higher temperatures,
∆s is negative also for very small values of µ.

The (T, µ) states corresponding to a vanishing RMPE
(along both types of thermodynamic paths) give rise to a
single, continuous locus of points L0 that is drawn in Fig-
ure 6 on top of the phase boundaries of the model. ∆s is
negative in the high-temperature/low-chemical-potential
region of the phase diagram. It is in this region that, ac-
cording to the entropic picture developed above, struc-
turally disordered states should occur and in fact such a
region largely overlaps with the conducting liquid phase.

The threshold associated with the upper, ascending
part of L0 is in clear relation to the Ising transition line:
in fact, in this case, the vanishing of ∆s anticipates the
critical-point divergence (see Figs. 4 and 5), a feature that
was already noted in Section 3.2 for the Ising model.

Conversely, the descending part of L0 runs close to
the KT transition line and is therefore associated in a
natural way with the loss of dipolar correlations which
characterize the insulating-gas phase. The KT transition
is weaker than any critical phase transition; moreover, it
does not mark the border of a long-range-ordered phase,
although a divergent correlation length is still present
on the metallic side. Renormalization-group arguments
predict a power-law asymptotic decay of the pair cor-
relations in the quasi-long-range-ordered dipolar phase
(transition line included) of the kind r−

1
Tε(T ) [16], where

ε (T ) is the T -dependent dielectric constant. At the tran-
sition point, one has 4Tcε (Tc) = 1, while ε < ε (Tc) for
T < Tc. Since large-distance correlations contribute to
s2 approximately as the integral from one to infinity of
r (g (r) − 1)2, ∆s takes finite values over the whole criti-
cal phase as long as Tε (T ) < 1 for any T ≤ Tc. In fact,
Tε (T ) ≤ Tcε (Tc) = 1/4; therefore, ∆s is well-defined be-
low Tc. On the contrary, the RMPE is expected to diverge
like the correlation length (as for Ising) when coming from
the high-temperature side of the KT transition. In a fi-
nite system, the RMPE singularity at Tc is rounded and
shifted. In fact, in our MC simulation we find that ∆s
turns from negative to positive values near Tc, while re-
maining small over the entire insulating phase (see Figs. 2
and 3). This behaviour is easily understood since the dipo-
lar fluid, notwithstanding the absence of extended spatial
correlations between dipoles, retains more order than the
liquid metal. In fact, strong correlations between opposite
charges are requested to form dipoles in the insulating
phase.

Finally, the RMPE is systematically positive for T <
0.15 and µ < 0.4. According to the entropic viewpoint,
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this indicates that the system is at least partially ordered
in such a region of the phase diagram. Moreover, the rapid
increase of ∆s that is found as µ approaches 0.4 is reminis-
cent of the first-order line, in that it records the proximity
to a long-range ordered phase.

In closing this Section, we would like to emphasize the
non trivial morphology of L0, the line were ∆s vanishes.
In fact, the corresponding “Ising” and “KT” loci merge
together to form a rounded cusp. Such a feature, which
manifestly unveils as the counterpart – in the “fine struc-
ture” of the statistical entropy – of the tricritical point,
is perhaps the most relevant and surprising finding of the
present study.

5 Conclusions

An entropy-based, one-phase method, recently proposed
for deciphering hidden signatures of the onset of order-
ing phenomena in statistical-mechanical models, has been
applied to selected 2D lattice-gas systems, specifically the
Ising lattice gas and the neutral Coulomb gas. The method
rests on the properties of the residual multi-particle en-
tropy (RMPE), a quantity that is found to be negative
inside a fully-disordered phase, while becoming positive
as soon as spatial correlations build up in relation to the
onset of order in the system, i.e., in proximity to phase
transition lines.

In the Ising case, the RMPE was calculated along the
critical isochore. Its profile is similar to that of the RMPE
for a hard-sphere system. However, the Ising RMPE van-
ishes at a temperature about 18% lower than the criti-
cal temperature. This is a consequence of the fact that
the RMPE must diverge at the critical point. Therefore,
in such cases, the information conveyed by the RMPE is
less interesting than for first-order phase transitions as
the freezing and phase separation of continuous, three-
dimensional multi-component fluids.

Much more interesting is the case of the neutral
Coulomb gas. This model describes a binary equimolar
mixture with a long-range interaction between particles.
The model exhibits a rather complex phase diagram. In
particular, the fully-disordered phase is a liquid metal that
is separated by an Ising line from a solid metal, and by
a Kosterlitz-Thouless (KT) line from a dipolar fluid. Two
loci of RMPE zeroes are found in this case, which follow
rather accurately the two transition lines. Moreover, these
loci merge together, forming a distinct “knee” in the close
neighborhood of the tricritical point of the model.

We also found that the RMPE behaviour is strongly
affected, in the vicinity of a phase transition, by the na-
ture of the transition itself. While the RMPE blows up
along the Ising transition line and remains infinite inside
the long-range-ordered phase,∆s is well-defined inside the
dipolar phase where it takes a minute positive value owing
to the absence of any long-range order. As a result, in a fi-
nite system the RMPE vanishes close to the KT transition
line.
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